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Abstract

This paper considers a three-tank control problem that is con-
trolled using a Model Predictive Control (MPC) approach. A
MPC algorithm was developed and implemented on a quad-
core controller board. The ability to simultaneously process
four tasks was used to parallelize the MPC algorithm. The pa-
per investigates the utilisation of the processors and the control
behaviour on the real plant using the parallel MPC algorithm.

1 Introduction

Since 2011 Water Software Systems research group has been
constructing the Water Sustainability Laboratory (WSL). The
WSL is equipped with devices that allow the physico-chemical
examination of wastewater as well as the simulation of and
experiments on water treatment processes. In this paper a
three-tank level control problem is considered in order to
investigate the capabilities and to determine the restrictions of
the new equipment such as actuators, sensors and in particular
the control system.
Model Predictive Control (MPC) was chosen as a modern
control approach, which is commonly used in the process
control industry and hundreds of other applications, see [1]
and [2] and references therein. Furthermore, MPC is capable
of utilizing the computing power of the state of the art control
system hardware.
MPC is not a specific control strategy but rather an ample
range of control methods developed around common ideas [3].
The three main features appearing in all the predictive control
families are: (i) the explicit use of a model to predict the
process response at future time instants (prediction horizon),
(ii) the calculation of a control sequence by minimising a
certain cost function and (iii) the use of a receding horizon
strategy i.e. at each instant the horizon is shifted toward the
future, which involves the application of only the first control
signal from the sequence calculated at each step.
MPC is a more advanced controlling technique than the PID-
Controller, since its characteristics overcome PID in many
aspects. It takes limitations of the actuators and if required
of the model states into account and it is easy to implement

even for multivariable control problems - to mention only the
main advantages of MPC [4]. However, one has to pay these
advantages with the periodic calculation of a computationally
demanding optimisation algorithm. Another disadvantage
is that a model is required that satisfactorily represents the
behaviour of the real system. Depending on the system this
model can not always be obtained easily. This significant
computational burden is one of the main reasons why MPC
has not replaced the traditional PID-Controller.

The main objectives of this paper are:

• The development and implementation of a real-time MPC
algorithm for a three-tank control problem.

• Parallelization of the control algorithm and implementa-
tion on a multi core system.

• Testing the behaviour of the MPC and analysing the utili-
sation of the controller on the physical plant.

Not only the on-line optimisation in MPC is time consuming
but it is also showing significant variation in the execution time.
The authors of [5] investigate and compare different scheduling
methods that can be applied with the MPC approach in order
to optimally utilize a processor. In this project however we
worked with the common static task scheduling method as in-
troduced in [6], since it is easy to implement and analyze.
The remainder of the paper is organised as follows: Section 2
describes the set up of the plant and the problems that had to
be solved. In section 3 the material and the methods that had
been used are presented. Section 4 describes the development
steps that had been taken. Experiments are discussed in section
5 and conclusions are given in section 6.

2 Problem formulation

The model to be controlled is a system of three tanks that
are set up in configuration similar to other works ([7], [8]).
Figure 1 shows how the tanks were connected. Tanks one and
three are buffer-tanks and have a capacity of 150l. Tank two
is a sequencing batch reactor with a volume of 190l. It is also
elevated by 20cm from the ground and has aerators attached to
the bottom. The water level of the tanks is measured via ultra-
sound sensors mounted on top of each tank. The two peristaltic
pumps have a bidirectional throughput (qc1, qc2) of maximal
3.3 l/min. The system dynamics are slow i.e. it takes a long



qeq qz2

qc2

T2

P2qz1

P1
qc1

T1 T3

U
S1

U
S2

U
S3

Fig. 1: The three tanks T1, T2, T3 were assembled as shown to form the
experimental setup used in this paper. Mounted on top of each was a ultrasound
sensor to measure the level of the water. The in- and outlet flow qz1 and qz2
are considered as disturbance. The water level in the tanks can be controlled
by qc1 and qc2 through the pumps P1 and P2. qeq describes the gravity driven
equalization flow between tank 1 and tank 2.

time for control changes to take effect. The manual valves for
the equalisation flow qeq between tank 1 and 2 as well as the
outlet valve qz2 of tank 3 have been set to a fixed position and
were not changed. The valve opening was chosen such that
the flow through the valve was always smaller than the pump
throughput in order to ensure the plants controllability. The in-
let flow qz1 comes directly from a connected water tap. The
maximum Inflow is more than two times greater than the pump
throughput.
To develop a MPC for this plant a model had to be obtained
from the physical model, such that it can be described e.g. in
the state space form

ẋ = Ax+Bu (1)

y = Cx+Du. (2)

After that, the cost function

min
x

1

2
xTHx+GTx (3)

had to be developed and minimized using the model descrip-
tion. Furthermore, constraints for this cost function had to be
defined such that

Ωx ≤ ω. (4)

Taking plant and control system, the cost function and its con-
straints as a given starting point, the development progressed
in the following steps:

1. Developing a mathematical model description for the
plant.

2. Implementing a MPC-Controller using the controller pro-
vided by the Simulink Model Predictive Control Toolbox.

3. Developing a MPC algorithm and splitting it into several
tasks.

4. Implementing the algorithm in the control system.

3 Methods and Materials

In our disposal are a number of new sensors, actuators and re-
actors, that allow the simulation of different water treatment
processes. The processes can be controlled via a high-end con-
trol system from dSPACE Ltd. The following hardware was
used:

• Reactors
• Ultrasound Sensors
• Marlow 520U peristaltic pumps
• DS2003 MUX ADC Board
• DS2103 DAC Board
• DS1006 Processor Board, x86 Quad-Core AMD

OpteronTM processor 2.8 GHz
• PC as control and engineering station

The DA/AD boards send and receive signals in the range of
maximal ±10V . The dSPACE system also comes with soft-
ware that allows the programming and controlling of the plat-
form. The four Real-Time Processor (RTP) on the processor
board can be programmed graphically via MATLAB Simulink.
dSPACE provides an additional so called Real-Time Interface
(RTI) library to Simulink that allows the connection to in-
/output boards and enables the compilation of models to the
control board. Almost all standard Blocks are supported by the
dSPACE system and some additional libraries like the MPC-
Toolbox can be compiled to the controller. To observe and
control the plant a software named ControlDesk is provided
by dSPACE. It allows the development of GUIs as well as the
capturing of data. For this paper the following softwares were
used:

• MATLAB R2009b
• Simulink
• dSPACE Real-Time Interface Toolbox (RTI1006)
• Model Predictive Control Toolbox
• ControlDesk NGTM Version 4

To distribute the calculation to multiple cores, the code was
partially rewritten in C following the implementation in [9] and
[10]. The implementation in Simulink was made using a C-
Code S-Function. In order to minimize the cost function and to
find the optimal control value for the linear model, the Dantzig
Quadratic Programming (QP) algorithm by N. L. Ricker and
A. Bemporad was used. It is the same algorithm that is used
by the MPC-Toolbox in Simulink. For simplicity however the
main part of the matrix operations that lead to the optimization
are implemented using Embedded Matlab Functions.

4 Development

4.1 Modeling

To obtain the mathematical description of the plant, figure 1
was used to write down the differential equations of the system.

ḣ1 = (−qeq − qc1 + qz1)/A1 (5)

ḣ2 = (qeq − qc2)/A2 (6)

ḣ3 = (qc1 + qc2 − qz2)/A1 (7)

As a first approach the model was obtained by measuring pa-
rameters of the system directly. The throughput of the pumps
as well as those of the valves were measured using a vessel and
a stopwatch to measure the throughput in a fixed time span.



Since pumps have a linear behaviour this approach appeared
to be the easiest. The gravity driven flow through the valves
follows the equation

q =
√

2 · g · h (8)

where g is the gravity constant and h is the distance from the
surface to the outlet. The nonlinear function was linearised us-
ing the polyfit function in MATLAB. The model gained from
this method however lacked accuracy and therefore had to be
improved. To do so, a sequence of control actions was applied
to the plant and the values measured by the ultrasound sensor
were recorded. The parameters of the model were then slightly
changed to fit its behaviour of the real plant.
Validation of the model proved it to be much more accurate
than before. This is not surprising, since in a mere theoretic
approach all hoses, connectors and valves as well as the char-
acteristics of the actuators and sensors were not taken into ac-
count. Figure 2 shows the result of the validation.
Having found valid parameters to describe the model, the dif-
ferential equations 5-7 were expressed in the state space using
equations 1 and 2. The water level of each tank forms one state
of the model and the flows qc1 and qc2 controlled by the pumps
were treated as the two input values.

A =

−a1·qeq
A1

a2·qeq
A2 0

a3·qeq
A1

a4·qeq
A2 0

0 0 a5·qz2
A1

 (9)

B =

− b1·qc1
A1 0

0 − b2·qc2
A2

b3·qc1
A1

b4·qc2
A1

 (10)

Since all states are measured directly the output matrix C is a
[3x3] identity matrix and the feedthrough matrix D is a [3x2]
zero matrix.

4.2 Implementing a MPC using the MPC-Toolbox

In this work the MPC-Toolbox was used as a first attempt to
control the plant with MPC. It was also used as a reference to
compare later results of MPC implementations.
Having the state space model of the plant makes implement-
ing the controller very simple, since Simulink provides a GUI
that allows the definition of the model and the setup of all fur-
ther parameters (such as prediction horizon or input weights)
as required. The author of [9] was looking closely at the imple-
mentation of the MPC Toolbox on a dSPACE system.

4.3 Developing a MPC algorithm and defining subtasks

To build the cost function shown in equation 3 the H and G
Matrices, had to be obtained from

H = ΘTQΘ +R (11)

and
G = 2ΘTQε (12)

where

ε =
(

Ψ · x(k − 1) + Υ · u(k − 1)
)
− xref (k). (13)

The matrices Ψ, Υ and Θ are gained from the state space model
and describe the behaviour of the model within a future predic-
tion horizon Hp. Therefore their value will not change during
simulation. The tracking error matrix ε is gained by calculating
the difference between reference trajectory (given by the user
as set point) and the free response of the system i.e. the plants
behaviour assuming that the last control action u(k − 1) will
not be changed and therefore is kept constant over the predic-
tion horizon. It therefore must be calculated periodically.
Q and R are diagonally shaped weighting matrices that allow
to punish errors in curtain states or the control actions for each
prediction step and with that change the behaviour of the MPC.
Their values can be calculated online to allow the user to apply
changes to them during the simulation. In the chosen imple-
mentation however Q and R can only be changed offline and
therefore they stay fixed during simulation. The Q matrix was
defined such that the deviation of the states from the set-point
was punished more in the near future than at the end of the
prediction horizon.

Since the optimisation problem in equation 3 has to be solved
in subject to the constraints expressed as shown in equation 4,
the restrictions of the plant have to be defined.
The constraints for control action were expressed as

−3.352 ≤ u1, u2 ≤ 3.352 (14)

and describe the maximal throughput of the pumps. The limi-
tations in the water level of the tanks were:

0 ≤ x1, x3 ≤ 65 (15)

and
20 ≤ x2 ≤ 85. (16)

The QP solver however calculates the change in the control
action, that has to be applied to the previous control value to
obtain the optimal control. Therefore all constraints have to
be expressed a constraint of ∆U over the prediction horizon.
The matrices Ω and ω have to be calculated each control step
to update the information of the last control action.

Having the matrices H , G, Ω and ω calculated, they directly
could be handed over to an opitimisation function such as quad-
prog. Finding the optimal solution using the Danzig algorithm
implemented in the C-Code S-Function however requires sev-
eral more matrix operations to calculate an initial tableau tabi,
the initial setting of il and ib as well as a initial basis that are
required by the Danzig algorithm. The matrices are build as
follows:

tabi =

[
−HT HT ΩT

ΩHT −ΩHT ΩT

]
(17)

basisi =

[
HT · arhs

crhs − ΩHT · arhs

]
(18)

where
crhs = ω − Ω · xmin, (19)
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Fig. 2: Result of the model validation. The left graph shows the control action applied to the physical model and the simulated model over a timespan of 20
minutes. The three graphs on the right show the change in water level for the simulated model and the real plant.

arhs = H · xmin −G (20)

and xmin a vector with the same number of rows asH contain-
ing only the lefthand side of the constraints for each prediction
step of the prediction horizon. ibi is a vector of a certain size,
where each row is an iteration of the previous added by one
starting at one. The number of rows nrow depends on the num-
ber of control signals ncontr the number of constraints nconst
and the control horizon Hu i.e. the horizon within which the
controller is allowed to apply changes to the control signal. The
size of ibi is calculated using

nrow = ncontrHu · (1 + nconst). (21)

ili is defined as −ibi. The variables as well as a value for the
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Fig. 3: The MPC algorithm was divided into subtasks as shown.

maximum number of iterations are handed over to the danzig

algorithm that returns the optimal change of control action. Af-
ter implementing and testing, the algorithm could be split into
6 subtasks as shown in Figure 3. The tasks are: (i) Receive
signals from physical model (ii) Build the cost function (iii)
Prepare matrices for the Danzig QP-Solver (iv) Minimise the
cost function using the Danzig QP-Solver (v) Check for over-
flow or dry run on the physical system (vi) Send the optimal
control signal to physical model.

5 Experiment and Discussion

A first experiment took the restrictions in the level of water in
each tanks into account. Doing so however made the controller
behave in rather undesired manner. Therefore the constraints
of the states were removed as also suggested in [4]. Using 1 as
initial value for all weights in Q and R, a prediction horizon of
10 steps and a sample time of 1 second, different weights were
applied and tested on the plant. The prediction horizon could
not be increased further, due to restrictions in the communica-
tion between multiple processors. See section 5.3 for further
details.

5.1 Weight Tuning

As a first step, tank three was defined as a buffer tank. Its
weight was therefore reduced by the factor of 0.1 compared
to the other tanks. Assuming further that the weights for both
pumps are always the same, different weights for the control
action were set and the control behaviour as well as the Root
Mean Square Error (RMSE) of tank one and two were anal-
ysed. The control action for different values of R is shown in
Figure 4. When analysing the RMSE of the tanks, it was found
that the dSPACE controller does not capture data periodically
but instead with irregular gaps of up to 6 samples. It happen
that more values have been captured during a curtain time inter-
val than in another interval. The calculation of RMSE therefore
becomes distorted and is unreliable.



0 500 1000 1500 2000 2500 3000 3500 4000

−10

−5

0

5

10

time in [s]
C

o
n

tr
o

l 
in

 [
V

]

Weight R=0.1

 

 

U1

U2

0 500 1000 1500 2000 2500 3000 3500 4000

−10

−5

0

5

10

time in [s]

C
o

n
tr

o
l 
in

[V
]

Weight R=1

 

 

U1

U2

0 500 1000 1500 2000 2500 3000 3500 4000

−10

−5

0

5

10

time in [s]

C
o

n
tr

o
l 
in

[V
]

Weight R=5

 

 

U1

U2

0 500 1000 1500 2000 2500 3000 3500 4000

−10

−5

0

5

10

time in [s]

C
o

n
tr

o
l 
in

[V
]

Weight R=10

 

 

U1

U2

Fig. 4: Control behaviour using different values to punish control action. The values for R are top to bottom: 0.1; 1; 5; 10. The set point was changed every
1000 seconds

5.2 Comparing Simulink Toolbox MPC with S-Function
MPC

Using the MPC-Block provided by the Simulink toolbox was a
simple way of testing the suitability of the model with an MPC
controller. Both the controller from the MPC-Toolbox and the
developed MPC use the danzig algorithm to minimise the cost
function. However giving them the same parameters for Q,
R and the control and prediction horizons their behaviour sig-
nificantly differs from each other. The Toolbox-MPC had to
be tuned further using additional functions such as constraints
softening and additional penalty for the control action itself.
Analysing the turn-around time after implementing the con-
troller on the dSPACE system, the MPC-Block from Simulink
was processed with a maximum turn-around time of 557,76 µs
on a single RTP. This was almost 100 µs faster then the de-
veloped MPC-algorithm which had a max. turnaround-time of
653,57 µs on a single core.

5.3 Controlling with Distributed Tasks

After defining the subtasks in section 4.3, different ways of dis-
tributing the tasks have been implemented and tested using also
different protocols to pass information between the RTPs. The
used protocols to handle data over to another processor were (a)
the synchronised swinging buffer protocol and (b) the virtual
shared memory protocol. Both are provided by RTI-toolbox
and are part of the Virtual Gigalinks, that represents the con-
nection between the cores on the DS1006 board. Each of the
18 Gigalink channels between two processors can transmit up
to 8 KB per sample. This restriction of the communication was
the reason why the prediction horizon had to be limited to 10
steps. Increasing the horizon entails a significant increase in the
dimension of the H and G matrix which, after that, exceeded
the restriction of the Gigalink channels.
In Protocol (a) the receiver is waiting for the sender to finish
writing in the buffer before it starts reading data from it. This
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Fig. 5: The tasks (i) to (vi) as introduced in figure 3 have been scheduled
as shown using the synchronised swinging buffer protocol for communication
between the RTPs.

is slow compared to protocol (b), however it ensures the con-
sistency of data. Since all tasks are started at the same time,
tasks that require data from previous tasks have to wait until
the previous calculation are completed. One can see the wait-
ing time in Figure 5 and 6. In figure 5 the process of sending
and receiving signals from the plant has been assigned to the
RTP 1, which causes a long waiting time to that RTP. In fig-
ure 6 the configuration allows the core 1 to idle most of the
time, however the waiting time from core 1 has been divided
on to the three other cores that are all waiting a little longer.
However a gain in the maximal turnaround time has been made
using this configuration. The maximum turnaround time using
the configuration shown in figure 5 is 797,98 µs where the one
used in figure 6 is only 707,3 µs.
Using protocol (b) the sender and receiver share a virtual mem-
ory, that can be addressed as local memory from each CPU. It
works without any synchronisation between the RTPs. This
creates the possibility that the receiver reads the same date
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between the RTPs.

more than once or worse that it reads data that are inconsistent.
Nevertheless it decreases the max. sample time significantly
as shown in figure 7. Implementing this configuration, showed
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Fig. 7: The tasks (i) to (vi) as introduced in figure 3 have been scheduled as
shown using the virtual shared memory protocol for communication between
the RTPs.

that the max. turnaround time could be decreased to 375,38
µs using this protocol. However after less than 1000 seconds
of simulation a deadlock occurred, that left the physical model
uncontrolled.
Apart from the deadlock, no change in the control behaviour
could be observed for any of the implemented parallel algo-
rithms. If slight have changes occurred, the slow system dy-
namics and the sensor inaccuracy made them unnoticeable.

6 Conclusions

The successful implementation of an MPC algorithm on multi-
ple processors controlling a physical three-tank model has been
accomplished. In order to ensure data consistency, as often re-
quired in a real-time control system, the synchronized swinging
buffer protocol has to be used. This slows down the commu-

nication between the RTPs significantly and makes the imple-
mented parallel algorithm slower than the same running on a
single core. To avoid this bottleneck, the amount of communi-
cation between the processors should be kept as small as pos-
sible. Another solution would be a parallel QP-algorithm as
introduced in [11] to speed up the calculation significantly.
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